96,848 research outputs found

    Alfven wave transport effects in the time evolution of parallel cosmic-ray modified shocks

    Get PDF
    Some of the issues associated with a more complete treatment of Alfven transport in cosmic ray shocks are explored qualitatively. The treatment is simplified in some important respects, but some new issues are examined and for the first time a nonlinear, time dependent study of plane cosmic ray mediated shocks with both the entropy producing effects of wave dissipation and effects due to the Alfven wave advection of the cosmic ray relative to the gas is included. Examination of the direct consequences of including the pressure and energy of the Alfven waves in the formalism began

    Cluster Accretion Shocks as Possible Acceleration Sites for Ultra High Energy Protons below the Greisen Cutoff

    Get PDF
    Three-dimensional hydrodynamic simulations of large scale structure in the Universe have shown that accretion shocks form during the gravitational collapse of one-dimensional caustics, and that clusters of galaxies formed at intersections of the caustics are surrounded by these accretion shocks. Estimated speed and curvature radius of the shocks are 1000-3000 \kms and about 5 Mpc, respectively, in the Ω=1\Omega=1 CDM universe. Assuming that energetic protons are accelerated by these accretion shocks via the first-order Fermi process and modeling particle transport around the shocks through Bohm diffusion, we suggest that protons can be accelerated up to the {\it Greisen cutoff energy} near 6×10196\times 10^{19} eV, provided the mean magnetic field strength in the region around the shocks is at least of order a microgauss. We have also estimated the proton flux at earth from the Virgo cluster. Assuming a few (1-10) \% of the ram pressure of the infalling matter would be transferred to the cosmic-rays, the estimated flux for E1019 E \sim 10^{19}eV is consistent with observations, so that such clusters could be plausible sources of the UHE CRs.Comment: 14 pages, uuencoded compressed postscript file. Accepted for Jan. 1, 1996 issue of Ap

    Three-Dimensional Simulations of the Parker Instability in a Uniformly-rotating Disk

    Get PDF
    We investigate the nonlinear effects of uniform rotation on the Parker instability in an exponentially-stratified disk through high-resolution simulations. During the linear stage, the speed of gas motion is subsonic and the evolution with the rotation is not much different from that without the rotation. This is because the Coriolis force is small. During the nonlinear stage, oppositely-directed supersonic flows near a magnetic valley are under the influence of the Coriolis force with different directions, resulting in twisted magnetic field lines near the valley. Sheet-like structures, which are tilted with respect to the initial field direction, are formed with an 1.5 enhancement of column density with respect to its initial value. Even though uniform rotation doesn't give much impact on density enhancement, it generates helically twisted field lines, which may become an additional support mechanism of clouds.Comment: 3 pages, uses rmaa.cls, to appear in Proc. of the Conference on "Astrophysical Plasmas: Codes, Models and Observations", Eds. J. Franco, J. Arthur, N. Brickhouse, Rev.Mex.AA Conf. Serie

    Preliminary design of a geologic sample acquisition and transport device Final report, May - Oct. 1965

    Get PDF
    Design concept for breadboard model of geological sample and transport device for Surveyor projec

    Precessing Jets and Molecular Outflows: A 3-D Numerical Study

    Full text link
    We present 3-D numerical hydrodynamical simulations of precessing supersonic heavy jets to explore how well they serve as a model for generating molecular outflows from Young Stellar Objects. The dynamics are studied with a number of high resolution simulations on a Cartesian grid (128x128x128 zones) using a high order finite difference method. A range of cone angles and precession rates were included in the study. Two higher resolution runs (256x256x256 zones) were made for comparison in order to confirm numerical convergence of global flow characteristics. Morphological, kinematical and dynamical characteristics of precessing jets are described and compared to important properties of straight jets and also to observations of YSOs. In order to examine the robustness of precessing jets as a mean to produce molecular outflows around Young Stellar Objects, ``synthetic observations'' of the momentum distributions of the simulated precessing jets are compared to observations of molecular outflows. It is found that precessing jets match better the morphology, highly forward driven momentum and momentum distributions along the long axis of molecular outflows than do wind-driven or straight jet-driven flow models.Comment: Accepted by ApJ, 31 pages, using aasms.sty, Also available in postscript with figures via a gzipped tar file at ftp://s1.msi.umn.edu/pub/afrank/3DJet/3DJet.tar.gz . For information contact [email protected]
    corecore